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Abstract—When running big parallel computations on thou-
sands of processors, the probability that an individual processor
will fail during the execution cannot be ignored. Computations
should be replicated, or else failures should be detected at run-
time and failed subcomputations reexecuted. We follow the latter
approach and propose a high-level operational semantics that
detects computation failures, and allows failed computations to be
restarted from the point of failure. We implement this high-level
semantics with a lower-level operational semantics that provides
a more accurate account of processor failures, and prove in Coq
the correspondence between the high- and low-level semantics.

I. INTRODUCTION

As processors get smaller and more distributed, parallel
computations run on increasingly larger number of processors.
In the not-so-distant future, we may have large simulations
running on a million cores for a couple of days, perhaps in
the context of an advanced physics or biology experiment, or
perhaps used to certify the safety of an engineering design.

The likelihood of a single processing unit failing during
such long-running parallel computations is actually quite high,
and can no longer be ignored. For example, if we assume
that the mean time between failures (MTBF) for a single
machine is one year, and we use one thousand machines for a
single computation, then the MTBF for the whole computation
becomes

1 year÷ 1000 ≈ 9 hours.

A simple—albeit expensive—solution is to use replication.
In theory, we can straightforwardly deal with a single fail-stop
failure with 3-way replication [1], and with a single Byzantine
failure with 4-way replication [2]. Replication, however, comes
at a significant cost, not only in execution time (since fewer
execution units are available), but also in the amount of energy
required to compute the correct result.

The alternative approach to replication is to use check-
pointing: that is, to run the computation optimistically with
no replication, to detect any failures that occur, and to rerun
the parts of the computation affected by those failures [3]. The
benefit of checkpointing over the replication approach is that
the effective replication rate is determined by the number of
actual failures that occurred in an execution and how large
a sub-computation was interrupted rather than the maximum
number of failures that the system can tolerate. To implement
checkpointing, one assumes that some part of the storage
space is safe (non-failing) and uses that to store fields needed

to recover from failures. This safe storage subsystem may
internally be implemented using replication, but this kind of
storage replication is much lighter-weight than replicating the
entire computation.

As for proving the correctness of these two approaches,
that of replication is relatively straightforward, because it uses
correctly computed results from one of the replicas in the
system. In the checkpointing approach, however, correctness
is not so straightforward, because failed processors can be in
inconsistent states and partially computed expressions are used
in reexecutions.

In this paper, we formalize checkpointing from a pro-
gramming language perspective and prove its correctness. For
simplicity, we will work in the context of a purely functional
programming language with fork-join parallelism (see §II).
For this language, we develop a high-level formal operational
semantics capturing the essence of the checkpointing approach
(see §III). In our semantics, the execution of a parallel compu-
tation may fail at any point; failures can then be detected and
the appropriate parts of a failed computation can be restarted.
This high-level semantics is quite simple to understand, and
can thus be used as a basis for reasoning about fault-tolerant
parallel programs.

To justify the completeness of our semantics with respect
to actual implementations, we also develop a lower-level
semantics, which models run-time failures and parallel task
execution at the processor level (see §IV). We then prove
theorems relating the two semantics and showing that our fault-
aware semantics are sound: whenever a program evaluates
to a value in the fault-aware semantics (perhaps by failing
a few times and recovering from the failures), then it can
also evaluate to the same value under the standard fault-free
semantics (see §V). All lemmas and theorems in this paper are
proved using the Coq proof assistant [4] and are available at:

http://plv.mpi-sws.org/ftpar

II. PROGRAMMING LANGUAGE

For simplicity, we focus on a minimal purely functional
language with built-in parallel tuple evaluation, allowing us to
express directly interesting large-scale parallel computations
by following the fork-join and map-reduce patterns. As we
will discuss further in §VI, the lack of side-effects means that
parallel tasks are independent, and so failure detection and
recovery can be done locally, at the task level.

http://plv.mpi-sws.org/ftpar
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Fig. 1. Rules for small-step fault-free evaluation, e e′.

In the following, let x range over program variables, n
over natural numbers, and f over function names. Values, v,
and expressions, e, of our language are given by the following
grammar:

v ::= x | n | (v1, v2) | fun f(x). e
⊕ ::= + | − | × | ÷ | = | 6= | < | ≤ | . . .
e ::= v | v1 ⊕ v2 | v1 v2 | letx = e1 in e2 | (|e1, e2|) |

fst v | snd v | if v then e1 else e2

In our language, values can be variables, natural numbers,
value pairs or (recursive) function definitions. Expressions
are either values, arithmetic and logical expressions, func-
tion applications, let bindings, parallel tuples, first or second
projections of pairs, or conditionals. As in C, our if-then-
else construct treats 0 as false and non-zero numbers as true.
We present the grammar of expressions in A Normal Form
(ANF) [5] just to make evaluation order explicit. The only
place where we differ from standard ANF and have expressions
rather than values is in the parallel tuple construct, (|e1, e2|),
because we want to model fork-join parallelism by possibly
evaluating the two expressions simultaneously. The language
can easily be extended with more constructs, types, etc., but
such features are orthogonal to the problem at hand.

III. HIGH-LEVEL SEMANTICS

This section contains the standard fault-free semantics for
our language both in big-step and small-step style, as well as
high-level big-step fault-prone and recovery semantics. Fault
prone semantics allows arbitrarily nested fail-stop failures, and
recovery semantics re-executes parts of a failed computation.
At the end of the section, we shall show correspondences
among the high-level semantics.

A. Fault-Free Evaluation

We have two standard fault-free evaluation semantics: (i) a
big-step fault-free evaluation, e ⇓ v, which is totally standard
and omitted for conciseness, and (ii) a small-step reduction
relation, e e′, which is defined as the least fixed point of the
rules in Fig. 1. The rules are fairly standard. For example, the
first rule says that arithmetic operations of the programming
language simply perform the corresponding operation over

v ⇓fp v n1 ⊕ n2 ⇓fp n1 ⊕ n2

e1 ⇓fp v1
e2[v1/x ] ⇓fp v2

let x = e1 in e2 ⇓fp v2

e[v2/x ][fun f (x ). e/f ] ⇓fp r
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e ⇓fp BOT (e)

e1 ⇓fp r1 not_value(r1)
let x = e1 in e2 ⇓fp LETL (r1, x , e2)

e1 ⇓fp v1
e2[v1/x ] ⇓fp r
not_value(r)

let x = e1 in e2 ⇓fp LETR (r)

Fig. 2. Rules for big-step fault-prone evaluation, e ⇓fp r.

natural numbers. Perhaps, the only interesting rules are the
last three concerning parallel tuples. The two expressions can
be evaluated independently; when both have become values,
we get the result as a value pair.

By standard proofs, we can show that big-step evaluation
is deterministic and that small-step evaluation is sound and
complete with respect to big-step evaluation.

Theorem 1. If e ⇓ v1 and e ⇓ v2, then v1 = v2.

Theorem 2. e ∗ v if and only if e ⇓ v.

B. Fault-Prone Evaluation

Fault-prone evaluation, e ⇓fp r (see Fig. 2), reduces an
expression, e, to a result r, which may be one of the following:

r ::= v | BOT(e) | LETL(r, x, e) | LETR(r) |
PTUPLE(r1, r2)

If we get a value, v, the evaluation is successful, thus not
requiring any reexecution (we can easily show that e ⇓fp
v ⇐⇒ e ⇓ v). If, however, e reduces to a non-value result r,
then we can inspect r to find where the failure occurred and
what parts of the computation had already been successfully
executed.

The primary cause of failure in the semantics is that any
expression can evaluate to bottom, represented as BOT(e).
The failed expression e is recorded so that it may used in the
recovery. Evaluation failures are propagated either by passing
the results directly (e.g., as in the case of function application),
when the premises of these rules are enough to recover the final
result of the expression, or by creating a special data structure,
such as PTUPLE(r1, r2), LETL(r1, x, e) and LETR(r).
We use these structures to store and avoid re-execution of the
successful sub-evaluations that are part of a failed computation.
For example, in the rule for parallel tuples, there are four
possible outcomes, namely, both branches are successful, both



1 + 1 ⇓fp 2 3 ⇓fp BOT(3)

(|1 + 1, 3|) ⇓fp PTUPLE(2,BOT(3))

Fig. 3. Fault-prone evaluation example

v ⇓recover v
e ⇓fp r

BOT (e) ⇓recover r

r ⇓recover v
e[v/x ] ⇓fp v2

LETL (r , x , e) ⇓recover v2

r ⇓recover r1 not_value(r1)
LETL (r , x , e) ⇓recover LETL (r1, x , e)

r ⇓recover v e[v/x ] ⇓fp r2
not_value(r2)

LETL (r , x , e) ⇓recover LETR (r2)

r ⇓recover v
LETR (r) ⇓recover v

r ⇓recover r1
not_value(r1)

LETR (r) ⇓recover LETR (r1)

r1 ⇓recover r ′1 r2 ⇓recover r ′2
PTUPLE (r1, r2) ⇓recover r ′1#r ′2

Fig. 4. Rules for big-step recovery evaluation, r ⇓recover r′.

fail, or one of the branches fails. The operator # combining
the results is defined as follows:

r1#r2 =

{
(v1, v2) if r1=v1 ∧ r2=v2
PTUPLE(r1, r2) otherwise

If both branches succeed, we get the value (v1, v2). Otherwise,
we get a PTUPLE(r1, r2) which records r1 and r2 to be used
in the recovery process. This will allow recovery, for example,
to re-evaluate only r1 if r2 were successful. This treatment
may be considered as a refinement over a naive semantics that
just propagates BOT to the top-level. However, we stress that
the whole point of our approach is to be able to reuse correctly
executed sub-computations during recovery. Re-executing the
entire computation from the beginning is not only wasteful,
but also has high probability for failure.

Figure 3 shows an example of a faulty evaluation of the
expression (|1 + 1, 3|), where the second branch of the parallel
pair fails. Note how the failure is recorded in the result.

C. Recovery Evaluation

If the program execution returns a non-value result, we run
the recovery process (see Fig. 4). This takes the recorded path
as input and attempts to re-evaluate the failed expression. To
reflect typical computer behavior, recovery of a failed compu-
tation can also fail, just as execution of original computations
can fail. Recovery operations are run on the same machines,
so we should assume the possibility of repeated failure. That is
why in the premise of the BOT(e) recovery rule, fault-prone
evaluation as opposed to fault-free evaluation is used. Fig. 5
illustrates a successful recovery of the failed result produced
by Fig. 3. The final result (2, 3) is the expected output from a
fault-free evaluation of (|1 + 1, 3|).

2 ⇓recover 2
3 ⇓fp 3

BOT(3) ⇓recover 3
PTUPLE(2,BOT(3)) ⇓recover (2, 3)

Fig. 5. Example recovery

D. Correctness and Progress of Recovery

First, we prove that fault-prone evaluation together with
recovery is sound and complete with respect to the fault-free
evaluation. Formally, we prove the following theorems, where
(⇓recover)∗ is the reflexive-transitive closure of ⇓recover.
Theorem 3 (Soundness of Recovery). If e ⇓fp r and
r(⇓recover)∗v then e ⇓ v.

Theorem 4 (Completeness of Recovery). If e ⇓ v then e ⇓fp v
and BOT(e) ⇓recover v.

Formal proofs of these theorems (as well as all other results
mentioned in this paper) can be found in our Coq formal-
ization. Completeness is quite easy as fault-prone evaluations
almost syntactically include fault-free evaluations. Soundness,
however, is somewhat trickier and relies on the insights that
(i) recovery evaluation is transitive, (ii) BOT(e) ⇓fp r ⇐⇒
e ⇓fp r, and (iii) e ⇓fp v ⇐⇒ e ⇓ v.

Besides soundness and completeness, we are interested in
proving some kind of progress for recovery evaluations. For
this purpose we define the preorder r′ � r stating that r′ is
“more advanced” than r.

Definition 1 (Result comparison). Let r′ � r be the least fixed
point of the following equations.

• r � BOT(e)
• v � r
• if r′1 � r1 and r′2 � r2, then

PTUPLE(r′1, r
′
2) � PTUPLE(r1, r2)

• if r′ � r, then LETL(r′, x, e) � LETL(r, x, e),
• LETR(r′) � LETL(r, x, e)
• if r′ � r, then LETR(r′) � LETR(r)

It is easy to show that � is a preorder (i.e., it is reflexive
and transitive). Sadly, however, it is not antisymmetric, the
reason being that BOT(e) � BOT(e′) for arbitrary e and e′.
The best we can show is the following pseudo-antisymmetry
property:

Lemma 5 (Pseudo-antisymmetry). If r � r′ and r′ � r, then
r ≈ r′, where ≈ is defined as the least fixed point of the
following equations.

• BOT(e) ≈ BOT(e′)
• v ≈ v
• if r′1 ≈ r1 and r′2 ≈ r2, then

PTUPLE(r′1, r
′
2) ≈ PTUPLE(r1, r2)

• if r′ ≈ r, then LETL(r′, x, e) ≈ LETL(r, x, e).
• if r′ ≈ r, then LETR(r′) ≈ LETR(r).

We can show that every recovery step makes ‘progress’ in
that it moves to more advanced states up to our preorder.

Theorem 6 (Progress). If r ⇓recover r′ then r′ � r.
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exp_not_value(e)
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Fig. 6. Rules for single processor evaluation, state  1 state′.

pm[pid1] = (RUN (|e1, e2|), s, e ′, s ′, d) fresh id in rm

pm, rm  m pm[pid1 := (START e1,Left id , 〈id : e2〉 · d)], rm[id := Neither s]
FORK

pm[pid1] = (FAILED e, s, d) pm[pid2] = (IDLE, d ′)

pm, rm  m pm[pid1 := (RECOVERED, d)][pid2 := (START e, s, d ′)], rm
RECOVER

pm[pid1] = (pc1, d1) pm[pid2] = (pc2, d2 · t)
pid1 6= pid2

pm, rm  m pm[pid1 := (pc1, t · d1)][pid2 := (pc2, d2)], rm
STEAL

pc1  1 pc2
pm[pid1] = (pc1, d)

pm, rm  m pm[pid1 := (pc2, d)], rm
LOCAL

pm[pid1] = (IDLE, 〈id : e〉 · d)
pm, rm  m pm[pid1 := (START e,Right id , d)], rm

POP_TASK

pm[pid1] = (RUN v,Left id , e ′, s ′, d)
rm[id ] = (Neither s)

pm, rm  m pm[pid1 := (IDLE, d)], rm[id := Left v s]
LEFT_FIRST

pm[pid1] = (RUN v,Left id , e ′, s ′, d)
rm[id ] = (Right v2 s)

pm, rm  m pm[pid1 := (START (v, v2), s, d)], rm[id := Finished v3]
LEFT_LAST

pm[pid1] = (RUN v,Right id , e ′, s ′, d)
rm[id ] = (Neither s)

pm, rm  m pm[pid1 := (IDLE, d)], rm[id := Right v s]
RIGHT_FIRST

pm[pid1] = (RUN v,Right id , e ′, s ′, d) rm[id ] = (Left v1 s)

pm, rm  m pm[pid1 := (START (v1, v), s, d)], rm[id := Finished v3]
RIGHT_LAST

Fig. 7. Rules for multiprocessor evaluation, pm, rm m pm′, rm′.

IV. LOW-LEVEL SEMANTICS

In the low-level semantics, we model the processors ex-
ecuting our program explicitly, together with the usual data
structures for distributing parallel tasks to them. In essence,
each processor has a queue, where it adds any parallel tasks
it creates, and removes them one by one to execute them. At
any time (typically when it is idle), a processor can also try
to steal a task from the queue of a different processor. This
approach, known as work stealing [6], dynamically balances
the work among processors, leading to very efficient imple-
mentations [7], [8]. In addition to work stealing, our semantics
models failures by allowing individual processors to fail, and
correctly running ones to recover (rerun) the computation that
a failed processor was executing.

A. Configurations

System-wide configurations consist of a processor map,
pm, and a result map, rm. The processor map maps processor
identifiers to a processor state, state , and a deque, d, of tasks
to be executed. A processor can be in one of following five
different states:

state ::= IDLE | START e, s | RUN e1, s1, e2, s2 |
FAILED e, s | RECOVERED

The first state represents the case, when the processor has
finished executing any tasks it started and can start another
task either by removing one from its deque or by stealing one
from another processor’s deque. Next is the START state,
where a processor has selected a task to execute but has not
yet started executing it. Here, we store the expression, e, to be
evaluated and the corresponding stack, s. The stack is list of
contexts ended by a marker identifying the task being executed:

s ::= Left id | Right id | Cons C s

The RUN state represents the case when a task is being
executed. Here, the first expression-stack pair (e1, s1) is used
to perform normal computations, while the second expression-
stack pair (e2, s2) remains constant throughout execution. We
assume that the latter pair is stored in some safe storage that
is kept intact in cases of failures. We have separate START
and RUN states to make explicit the step that stores the
current expression and stack to a safe storage. Next, is the
failed state, which simply drops the first expression-stack
component of the running state, and records only the second
tuple which is supposed to survive failures. Finally, in order
to prevent multiple recoveries of the same failed state, we use
RECOVERED state to mark processors whose failures have
been recovered.



The deque, d, is a (usually optimized) doubly ended queue
of tasks, 〈id : e〉, created by the FORK rule when evaluating
a parallel tuple. More specifically, evaluation of a parallel
tuple creates a new task for the right branch, pushes it to the
deque, and then proceeds directly to execute the left branch.
Tasks pushed to the deque are later removed either by the
same processor (POP_TASK), when it becomes idle, or at any
point by other processors (STEAL). Tasks popped by the same
processor are removed from the same end of the deque as they
are added, whereas stolen tasks are removed from the other
end. Similar to the recorded expression-stack pairs, we assume
that deques are stored in a safe storage that is unaffected by
failures.

The result map is used to keep track of results of forked
parallel tuple computations. It maps fork identifiers to one
of the following four possibilities, depending on whether the
left and/or the right branches of the fork has finished their
computation:

res ::= Neither s | Left v s | Right v s | Finished v

If neither of the branches have finished, rm[id] = Neither s,
where s stores the continuation stack: the computation to be
executed once both branches of the parallel tuple finish. If
one of the branches has finished, we record its value and the
continuation stack. If, however, both branches have finished,
we no longer need to store the continuation stack, as a new
task performing that work will have been started.

B. The Operational Semantics in Detail

Our operational semantics consists of two relations,  1

and  m. The former (in Fig. 6) describes execution steps that
are local to single processor, whereas the latter (in Fig. 7)
defines executions of the whole system.

The single processor evaluation semantics (see Fig. 6)
is comprised of five rules. The first takes a small step in
the evaluation of current expression in the RUN state. The
second moves from the START state to the RUN state by
committing e and s to the safe storage. The next two rules
push and pop contexts to and from the local stack. The last
rule describes failures, taking the processor from RUN to
FAILED state, where it only keeps the fields in the safe
storage (i.e., e′, s′).

Multiprocessor execution (see Fig. 7) consists of nine
reduction rules. Whenever the current expression is a parallel
tuple, FORK rule applies. This rule assigns first element of
parallel tuple as current expression with a START label, and
pushes second element to deque for further to be executed.
It also reserves a key in the result map in order to refer that
for recording values coming out of the branches of execution
and also getting back to execution with a continuation stack.
RECOVER rule applies when there exists a failed processor and
an idle processor. Idle processor recovers both lastly executed
expression on the failed processor together with its deque. In
STEAL rule, topmost task in a deque of one processor is stolen
by another processor (i.e. pushed to the deque of latter from
bottom). LOCAL rule represents the independent executions of
different processors. In other words, if a processor takes a step
then it is applied globally with this rule. POP_TASK rule, as
the name suggests pops a task from deque and it applies only

when a processor is in IDLE state. Following four rules record
results from a successful partial evaluation of branches which
are created by a fork operation earlier. If left branch finishes
its execution first, LEFT_FIRST rule applies. As we can see
in its premise, we require that we do not have the result of
right branch (i.e. we have a record with "Neither" label in the
result map indicating that none of the branches has submitted
its result yet). After applying the rule, the result map stores the
value of left branch keeping the previous continuation stack.
In the LEFT_LAST case, the result map already has the value
of right branch. Therefore after applying the rule, it stores
the value pair consisting of the values coming out of both
branches. The continuation stack is also moved from the result
map in order for the context to be used afterwards. Finally,
RIGHT_FIRST and RIGHT_LAST are symmetric to the previous
two.

C. Example Evaluations

An example for fault-free multiprocessor execution in
shown in Fig. 8, where we evaluate the expression (|1 + 1, 3|)
returning (2, 3). In step 2 current expression for the first
processor goes from START to RUN state. Step 3 is a fork
where we assign id1 as fork identifier and record the current
stack Right id0 in the result map as continuation. Step 4 moves
to RUN state, but this time for the expression (1+ 1). In step
5 the expression (1+1) is evaluated to 2. In step 6, the second
processor steals right branch from the first processor and then
evaluates it. We submit the result of right branch first and
then the left branch. When both submitted their results, we
have (2, 3) as the result of the fork operation. Since left is
submitted later by the first processor, it gets the stack Right
id0 from the result map as its continuation. After going to RUN
state once more in step 11, we submit the result of the whole
computation in step 12. If we store anything in the result map
for the identifier of initial expression (id0) and if the branches
match (Right), then we get the result of overall computation.
Therefore after applying enough number of steps of  m, we
get (2, 3) as the result of evaluating (|1 + 1, 3|).

In our failure and recovery example (see Fig. 9), the first
seven steps are exactly the same as in the previous example.
We assume that the second processor fails at step 8. After
that, since execution of left branch is already completed by
the first processor, we record the value 2 as the result of left
branch. Then, the first processor becomes idle. Therefore, it
can recover the failure of the second processor. It gets the
current task on which the failed processor was previously
working, that is the right branch of the fork id id1. The rest
of the steps are evaluating the right branch and submitting
the result to the result map. At the very end of this failure
and recovery execution, we still get the same result. This
is an example of the correspondence between the fault free
evaluation and fault-prone evaluation with recovery actions in
our low-level multiprocessor computation.

V. PROOFS OF CORRESPONDENCE

In this section, we define well-formedness of a computation
and prove that it is preserved by every multiprocessor step. Our
definitions are purposely in an informal style for conciseness:
the formal definitions can be found in our Coq development.



# Processor 1 (pm[pid1]) Processor 2 (pm[pid2]) Result Map (rm) e s.t. 〈pm, rm〉 ∼id0 e
1 START (|1 + 1, 3|), Right id0, [] IDLE, [] id0:Neither s (|1 + 1, 3|)
2 RUN (|1 + 1, 3|), Right id0, [], (|1 + 1, 3|), Right id0 IDLE, [] id0:Neither s (|1 + 1, 3|)
3 START (1 + 1), Left id1, [Right id1 3] IDLE, [] id0:Neither s,

id1:Neither (Right id0) (|1 + 1, 3|)

4 RUN (1 + 1), Left id1, [Right id1 3], (1 + 1), Left id1 IDLE, [] id0:Neither s,
id1:Neither (Right id0) (|1 + 1, 3|)

5 RUN 2, Left id1, [Right id1 3], (1 + 1), Left id1 IDLE, [] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

6 RUN 2, Left id1, [], (1 + 1), Left id1 IDLE, [Right id1 3] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

7 RUN 2, Left id1, [], (1 + 1), Left id1 START 3, Right id1, [] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

8 RUN 2, Left id1, [], (1 + 1), Left id1 RUN 3, Right id1, [], 3, Right id1
id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

9 RUN 2, Left id1, [], (1 + 1), Left id1 IDLE, [] id0:Neither s,
id1:Right 3 (Right id0) (|2, 3|)

10 START (2, 3), Right id0, [] IDLE, [] id0:Neither s,
id1:Finished (2, 3) (|2, 3|)

11 RUN (2, 3), Right id0, [], (2, 3), (Right id0) IDLE, [] id0:Neither s,
id1:Finished (2, 3) (2,3)

12 IDLE, [] IDLE, [] id0:Right (2, 3) s,
id1:Finished (2, 3) (2,3)

Fig. 8. Example showing a fault-free execution of the low-level semantics with two processors.

# Processor 1 (pm[pid1]) Processor 2 (pm[pid2]) Result Map (rm) e s.t. 〈pm, rm〉 ∼id0 e
1 START (|1 + 1, 3|), Right id0, [] IDLE, [] id0:Neither s (|1 + 1, 3|)
2 RUN (|1 + 1, 3|), Right id0, [], (|1 + 1, 3|), Right id0 IDLE, [] id0:Neither s (|1 + 1, 3|)
3 START (1 + 1), Left id1, [Right id1 3] IDLE, [] id0:Neither s,

id1:Neither (Right id0) (|1 + 1, 3|)

4 RUN (1 + 1), Left id1, [Right id1 3], (1 + 1), Left id1 IDLE, [] id0:Neither s,
id1:Neither (Right id0) (|1 + 1, 3|)

5 RUN 2, Left id1, [Right id1 3], (1 + 1), Left id1 IDLE, [] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

6 RUN 2, Left id1, [], (1 + 1), Left id1 IDLE, [Right id1 3] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

7 RUN 2, Left id1, [], (1 + 1), Left id1 START 3, Right id1, [] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

8 RUN 2, Left id1, [], (1 + 1), Left id1 RUN 3, Right id1, [], 3, Right id1
id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

9 RUN 2, Left id1, [], (1 + 1), Left id1 FAILED 3, Right id1, [] id0:Neither s,
id1:Neither (Right id0) (|2, 3|)

10 IDLE, [] FAILED 3, Right id1, [] id0:Neither s,
id1:Left 2 (Right id0) (|2, 3|)

11 START 3, Right id1, [] RECOVERED, [] id0:Neither s,
id1:Left 2 (Right id0) (|2, 3|)

12 RUN 3, Right id1, 3, Right id1, [] RECOVERED, [] id0:Neither s,
id1:Left 2 (Right id0) (|2, 3|)

13 START (2, 3), Right id0, [] RECOVERED, [] id0:Neither s,
id1:Finished (2, 3) (|2, 3|)

14 RUN (2, 3), Right id0, (2, 3), Right id0, [] RECOVERED, [] id0:Neither s,
id1:Finished (2, 3) (2,3)

15 IDLE, [] RECOVERED, [] id0:Right (2, 3) s,
id1:Finished (2, 3) (2,3)

Fig. 9. Example showing a low-level execution where processor 1 fails and is recovered by processor 2.

In order to define our well-formedness condition, we need
two auxiliary definitions: apply(s, e), that applies the contexts
in the stack s to the expression e, and last(s), which bypasses
all the contexts and returns the top-most entry in the stack.
These two functions are recursively defined as follows:

apply(s, e)
def
=

{
apply(s′, C[e]) if s = Cons C s′

e otherwise

last(s)
def
=

{
last(s′) if s = Cons C s′

s otherwise

Definition 2 (Well-Formed Configurations). A system-wide
configuration (pm, rm) is well formed if all the following
conditions hold:

1) Tasks stored in all of the deques together with the
running tasks are pairwise unique;

2) Running tasks are not marked as finished in rm; and
3) Whenever pm[pid] = RUN e, s, e′, s′, d, we have

(i) apply(s′, e′)  ∗ apply(s, e) and (ii) last(s) =
last(s′). In other words, e and s should be a partially
evaluated version of the computation represented by
e′ and s′.

Lemma 7 (Well-Formedness Preservation). If (pm, rm) is
well formed and pm, rm  m* pm′, rm′ then (pm′, rm′) is
also well formed.

Our main soundness theorem states whenever a low-level
execution returns a value, then there is a high-level fault-free
execution returning the same value. Since fault-free high-level
big-step executions are deterministic, this means that the low-
level executions, if they terminate by returning a value, will
always return the ‘right’ value. The formal statement is as



follows:

Theorem 8 (Soundness).
If pm = empty[pid := (START e,Right d, [])] and rm =
empty[id := (Neither (Left id))] and pm, rm  m∗ pm′, rm′

and rm′[id] = Right v s, then e ⇓ v.

We prove Theorem 8 by constructing a forward simu-
lation [9]. We define the relation as 〈pm, rm〉 ∼id e that
relates a configuration (pm, rm) and a fork identifier id to the
expression e corresponding to the current partially evaluated
form of the parallel pair identified by id. For brevity, we omit
the formal definition, but show the relation for the example
executions in Fig. 8 and 9. A basic property of our simulation
relation is that it is deterministic.

Lemma 9. If 〈pm, rm〉 ∼id e1 and 〈pm, rm〉 ∼id e2 then
e1 = e2.

Further, we can show that it is indeed a simulation, namely
that it is preserved by reduction.

Lemma 10 (Simulation). If 〈pm, rm〉 ∼id e and pm, rm m

pm′, rm′ then there exists an e′ such that e  ∗ e′ and
〈pm, rm〉 ∼id e′.

Having proved these lemmas, we can now prove Theorem 8
by an induction on the length of  m∗ and appealing to
Lemmas 7, 9 and 10.

We also prove a completeness theorem stating that when-
ever a high-level computation returns a value, it is possible for
the low-level computation to return the same value. Given the
soundness theorem above (Theorem 8) and the determinism of
the high-level fault-free big-step semantics (Theorem 1), this
theorem essentially means that low-level computations never
get stuck unless the corresponding high-level computations do.

Theorem 11 (Completeness).
If e ⇓ v and pm = empty[pid := (START e,Right d, [])]
and rm = empty[id := (Neither (Left id))] then there exists
pm′ and rm′ such that pm, rm m∗ pm′, rm′ and rm′[id] =
Right v s.

To prove Theorem 11, we only need to consider a non-
failing execution with a single processor. By applying The-
orem 2, which relates fault-free small-step and big-step ex-
ecutions, and our assumption, we know that e  ∗ v. By
induction on the length of the ∗ execution, we can construct
a corresponding low-level execution.

VI. RELATED WORK

This paper brings together the checkpointing approach for
tolerating failures of distributed computations, and the work
stealing approach for scheduling fork-join parallel computa-
tions. Both of these topics have been well studied in isolation,
but to the best of our knowledge they have not been considered
together before.

There are many works on the practice of the checkpointing
approach to deal with failures in distributed systems, some
of which come with informal proofs of correctness for the
proposed implementations (e.g., [10], [11]). A survey can be
found in Elnozahy et al. [3]. In general, these works deal

with the more complex case where we want to protect an
arbitrary computation running on a distributed system against
node failures. In such computations, the various nodes of the
distributed system typically communicate by exchanging mes-
sages, making the node computations highly interdependent.
While doing a rollback from a failure these dependencies
create the so-called ‘domino effect’ [12]. Cao et al. [13] uses
the notion of dependency graph for checkpointing in order
to resolve this problem in propagating the rollback actions.
Koo et al. [10] also proposed an algorithm dealing with
the dependency issues among processors. In our model of
computation, however, the computation is purely functional
and divided into independent tasks that can be executed on any
processor. One important property of our task representation
is that there is no dependency between any two tasks in terms
of recovery. Therefore it is sufficient to keep local checkpoints
for each task and there is no need to propagate the recovery
actions. Recovering a failed computation of a task is enough
to get back to consistent state of the system.

When we consider scheduling parallel computations and
load balancing, work stealing algorithms schedule fork-join
style parallel computations within a near-optimal theoretical
bound [6], [14] and have been shown to be very efficient in
practice [7], [8]. Because of this, we decided to take work-
stealing algorithm as the base for our fault free evaluation, we
also modified the steal operation to recover failed processors.

VII. CONCLUSION

In recent years, parallel computations are run on thousands
of processors, all of which are vulnerable to faults. Designing
good fault detection and recovery mechanisms is therefore of
great importance to people relying on such massively parallel
computations. In this paper, we made the first small step in that
direction, by approaching the problem from a programming
language perspective.

We used a purely functional language that includes parallel
pairs in its syntax for representing fork-join style parallel
computations. As evaluation schemes of this language, we
designed both high- and low-level semantics, which we il-
lustrated using examples. Finally, we proved correspondence
properties relating the high- and low-level semantics. The
lemmas and theorems we state in this paper were proved using
the Coq interactive theorem prover [4], thereby giving us full
confidence for their correctness. We also used Ott [15] in order
to more conveniently write and typeset the semantics and then
generate the corresponding Coq definitions.

The goal of this work is not efficiency but correctness.
Therefore, for simplicity, we save every parallel task generated
by evaluation in safe storage in order to be able to recover from
a possible failure. The granularity at which tasks should be
checkpointed can, however, in principle be adjusted allowing
us to trade off the cost of frequently saving information against
the larger recovery costs. Figuring out a good such trade-off
is left for future work.
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