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Abstract. We extend fenced separation logic (FSL), a program logic for
reasoning about C11 relaxed access and memory fences. Our extensions
to FSL allow us to handle concurrent algorithms appearing in practice.
New features added to FSL allow for reasoning about concurrent non-
atomic reads, atomic updates, ownership transfer via release sequences,
and ghost state. As a demonstration of power of the extended FSL, we
verify correctness of the atomic reference counter (ARC), a standard
library of the Rust programing language, whose implementation relies
heavily on advanced features of the C11 memory model. Soundness of
FSL and its extensions, as well as the correctness proof of ARC have
been established in Coq.

1 Introduction

Most formal verification work on multithreaded programs with concurrent ac-
cesses to shared memory assumes that programs follow the sequentially con-
sistent model of execution [22]. In this model, the executions of a concurrent
program consist of all possible interleavings of the actions of its threads.

Even though sequential consistency is a simple and intuitive concurrency
model, it does not match the real world. In practice, no hardware provides us
with a sequentially consistent execution environment. In order to improve per-
formance or conserve energy, modern hardware implementations give us what
is known as weak memory models; that is, models of concurrency providing
weaker guarantees than sequential consistency. As a result, most of the verifi-
cation techniques developed for sequential consistency are inapplicable to weak
memory models.

In this paper, we will focus on the C11 weak memory model. This software-
level model was introduced by the 2011 C and C++ standards [15, 16] as an
abstraction over the various different hardware memory models, and provides
various low-level primitives for developing efficient concurrent programs. These
low-level primitives are slowly gaining adoption not only in C and C++, but are
also being incorporated in other programming languages such as Java and Rust.

As the adoption of C11-style weak memory primitives grows, so does the
importance of being able to verify correctness of algorithms that use them. Cur-
rently, the most successful logic for reasoning about the C11 memory model
is GPS [34], which has, for instance, been used to verify an implementation
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of the read-copy-update (RCU) algorithm [33], a synchronization mechanism
used in the Linux kernel. GPS, however, has an important limitation: namely, it
can reason only about the release-acquire fragment of the C11 memory model,
which leaves programs that use relaxed operations (i.e., operations weaker than
release-acquire ones) completely out of the reach of GPS. One such algorithm is
the atomic reference counter (ARC) [1], which we will verify in this paper.

ARC is a part of the standard library of the Rust programming language [2]
and provides an interface for concurrent access to a shared data structure. The
shared structure can be read by multiple threads, but cannot be modified. ARC
ensures that the shared data structure will be deallocated once no reader needs
to access the data structure any more. Features present in ARC, which are
unsupported by GPS, include relaxed memory accesses and memory fences.

There is a logic that can deal with both relaxed accesses and memory fences:
fenced separation logic (FSL) [13]. Unfortunately, even though FSL supports
relaxed accesses and memory fences, it lacks some key features which makes it
inapplicable beyond simple “toy” examples.

In this work, we extend FSL to make it applicable to real world examples,
using ARC as a demonstration of its abilities. Specifically, we extend FSL with
three new features:

– partial read permissions for non-atomic accesses [8, 10],
– support for compare-and-swap (CAS) operations, and
– ghost state [12, 18,23],

all of which are actually needed for proving ARC correct.
Among these three features, the most interesting is ghost state because it

interacts with the other FSL features in novel and interesting ways. Ghost state
represents supplementary logical resources not used by the program, but only
by the user of the logic in order to establish program’s correctness.

Ghost state interacts with FSL’s ability to transfer ownership of resources
between threads. For soundness purposes, transferring a resource from one thread
to another cannot happen by simply writing or reading a shared variable; it
requires some form of additional synchronization: either a memory fence or a
special type of memory access, which essentially incorporates a fence.

A key observation that we made, however, is that ghost state may be soundly
transferred between threads under weaker conditions than the other types of
resources owned by threads. In particular, it may be transferred by simple non-
synchronizing memory accesses! In essence, this is sound because unlike other
resources such as x 7→ 5, owning some ghost state does not provide additional
power to a thread to perform an action; it only allows us to deduce that certain
interference patterns between threads are not possible. As such, the soundness
proof can impose slightly weaker conditions that allow two threads to occasion-
ally own the same ghost state resource simultaneously.

At this point, it is worth noting that the soundness proof of FSL assumes a
standard strengthening of the C11 model which disables some compiler optimiza-
tions (namely, read-write reordering). This strengthening of the C11 model—
though standard and partly necessary for performing any kind of formal rea-
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new(v){
a = alloc();
a.data = v;
a.countrlx = 1;
return a;

}

drop(a){
t = fetch_and_addrel(a.count, -1);
if(t == 1){

fenceacq;
free(a);

}
}

read(a){
return a.data;

}

clone(a){
fetch_and_addrlx(a.count, 1);

}
Fig. 1. Atomic reference counter implementation.

soning about the model—has interesting implications for the soundness of ghost
state, which we will discuss in §5.2.

With FSL strengthened in this way, we are able to formally verify an imple-
mentation of ARC that uses the same pattern of atomic accesses and memory
fences as the one that can be found in the standard library of Rust. Both the
soundness proof of the new features of FSL and the formal correctness proof of
ARC have been fully mechanized in Coq. The complete Coq development, to-
gether with our online appendix, is available at http://plv.mpi-sws.org/fsl/.

As a rough measure of the effort required to extend the FSL with the features
mentioned above, we can look at the size of the Coq development. The size of the
soundness proof for FSL is approximately 17.6 KLOC (thousand lines of code),
while the soundness proof for FSL++ consists of around 22.7 KLOC representing
an increase in size of about 30%. Another 2000 lines were required to complete
the verification of ARC, out of which 800 belong to generic auxiliary lemmas,
while the remaining 1200 closely follow the correctness proof outlined in §4.

2 Atomic Reference Counter

Before going into FSL and its extensions, let us first have a look at the ARC
algorithm, as we will use its features to motivate our extensions of FSL.

2.1 The Algorithm

Our ARC implementation is given in Fig. 1 and consists of four functions: new,
read, drop, and clone. To gain a basic understanding of the algorithm, we can
ignore the rel, acq, and rlx annotations, as well as any fence instructions.

Function new(v) creates a new ARC object a, sets its data field to v, and
the count field to 1. The data field holds the value that can be accessed through
the ARC object, and count counts the number of references to the ARC object.

Function read(v) simply returns the value stored in the ARC object.
Function clone(a) operationally just increments the reference counter by one

using an atomic fetch-and-add instruction. Semantically, clone gives us another
reference to the ARC object (hence the increment of the counter), which can now

http://plv.mpi-sws.org/fsl/
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{
emp

}
new(v)

{
a. ARC(a, v)

}{
ARC(a, v)

}
read(a)

{
y. y = v ∧ ARC(a, v)

}{
ARC(a, v)

}
clone(a)

{
ARC(a, v) ∗ ARC(a, v)

}{
ARC(a, v)

}
drop(a)

{
emp

}
Fig. 2. ARC specification in separation logic.

also be used to access the value stored in the ARC object. After calling clone
we can, for example, create a new thread, let it read from one ARC reference,
and keep the other reference available for ourselves.

Function drop(a) disposes of a reference to the ARC object a. If there are still
multiple references to the ARC object, drop only decreases the reference counter.
On the other hand, if the counter gets decremented from one to zero (i.e., there
are no more references to the ARC object), drop also deallocates the ARC object.

The intended use of the ARC library can be succinctly expressed in terms of
separation logic in Fig. 2. In this specification, ARC(a, v) represents the permis-
sion to run functions that access the ARC object a. This permission is created
by the function new, duplicated by clone, and destroyed by drop.

2.2 Why Is ARC Correct?

Let us now consider why ARC is correct. Before attempting to answer this
question, we should first ask ourselves, what is the correctness criterion for this
algorithm? In other words, what should its specification in Fig. 2 achieve?

For the algorithm to operate correctly, we are primarily interested in mem-
ory safety. We have to ensure that the deallocation does not happen until all
the threads are done with reading the value stored in the ARC object. More
precisely, the read of the data field in the read function should not race with
the deallocation that happens in the drop function.

Additionally, the deallocation should not be attempted twice. For this partic-
ular algorithm, it is quite easy to see that is not the case: deallocation happens
only once, when the reference counter drops to zero.

In remainder of this section, we therefore focus on the first property.

Sequential Consinstency From the perspective of the interleaving semantics
(a.k.a. sequential consistency), the situation is quite clear. Recall that the deallo-
cation happens when drop decrements the reference counter to zero. This means
that all the ARC objects that have been produced (by either new or clone) have
also been disposed of by drop. Obviously, no call to read can be made any more,
since we no longer have any ARC objects available.

Weak Memory When moving to weak memory models, such as C11, the rea-
soning becomes significantly more complex. In what follows, we are going to give
a simplified presentation of the C11 model, focusing on the features used in the
ARC algorithm. Complete presentations of the C11 model can be found in [6,35].
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Fig. 3. Basic release-acquire synchronization.

The C11 model presents executions as graphs where nodes (also called events)
represent memory accesses. Events (i.e., memory accesses and fences) can be
either reads (R), writes (W), updates (U), or fences (F). Reads and writes can
be of atomic or non-atomic kind, while updates represent atomic read-modify-
write instructions, such as compare-and-swap or fetch-and-add, and can thus be
only of atomic kind.

Having a data race on non-atomic accesses is considered to be a programming
error, while racing on atomic access is allowed. Atomic accesses provide us with
mechanisms to implement synchronization among different threads. How effec-
tive an atomic access is in enforcing synchronization depends on its type. Types
of atomic accesses are: relaxed (rlx), which can be applied to any atomic access;
release (rel), for writes and updates; acquire (acq), for reads and updates; and
acquire-release (acq_rel) for updates only.

For us, the most important question about the C11 model is, how do we know
when one event precedes another in a given execution?

Put simply, the C11 model specifies that the events in different threads are
happening concurrently, and the only way to be sure that two events from dif-
ferent threads are happening in some definite order is to have one of them “see”
the other through the process of synchronization. In other words, in order to
show that an event a happens before another event b, we have to be able to
start at a, and eventually reach b by following thread execution “downstream”,
and the only time we are allowed to move from one thread to another is at the
synchronization points.

Some simple ways to achieve synchronization are depicted in Fig. 3. Syn-
chronization always connects a release event (event of a rel or acq_rel type)
with an acquire event (event of an acq or acq_rel type), and always happens
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new()

clone()

a: drop() clone()

b: drop() c: drop()

reads

reads

reads

reads

reads

sync

sync

Fig. 4. An example execution of the ARC algorithm.

as consequence of a read. In Fig. 3a we see the simplest case of synchronization,
which happens immediately when an acquire read reads from a release write. In
the other three situations in Fig. 3, relaxed accesses are helped along by fences
(which can be of a rel, acq, or acq_rel kind) in order to achieve synchroniza-
tion. Note that in these three cases, synchronization does not occur immediately
as the read happens, but is delayed until all the required fences come into play.

Looking back at the ARC algorithm in Fig. 1 we can see that it uses re-
laxed accesses in the new and clone functions, while the function drop features
a release access and an acquire fence. Instead of being regular reads or writes,
fetch_and_add instructions are atomic update events, which act as both reads
and writes. A release update (such as the one inside drop) acts as a release write
and a relaxed read, while relaxed updates are relaxed as both reads and writes.

In order to get an intuitive understanding of the synchronization strategy em-
ployed by the ARC algorithm, we will have a look at the example execution pre-
sented in Fig. 4. The underlined drop function is the one that does the dealloca-
tion. To ensure absence of data races, all other drop functions should synchronize
with drop. This suffices to ensure the absence of races, because we know by the
intended use of the ARC library that every read will be followed by some drop.

One of these synchronizations happens according to Fig. 3b, as the drop at
node b reads from the drop at node c. For the other synchronization between
nodes a and b, however, the mechanisms presented in Fig. 3 are just not enough.

The problem we are facing with achieving the other synchronization is that
so far presented synchronization mechanisms allow an acquire construct to syn-
chronize only with one other thread. What we need is some mechanism that will
allow the single acquire fence in the whole ARC algorithm to synchronize with
multiple release writes.

In order to synchronize all threads before deallocation, ARC exploits a more
advanced synchronization technique provided by C11 called release sequences.
Simply stated, to trigger synchronization between two threads it is not neces-
sary for one to read directly from the other (as in Fig. 3), but there can be a
reading chain (through atomic updates) from one thread to the other.



Tackling Real-Life Relaxed Concurrency with FSL++ 7

Wrel U U Racq

sync

(a) write → read

Wrel U U

Facq

Rrlx

same
threadsync

same
thread

(b) write → fence

Frel

RacqU UWrlx

same
thread

sync

(c) fence → read

Frel

FacqWrlx

Rrlx

U

Usame
thread

same
thread

sync

(d) fence → fence
Fig. 5. Synchronization through release sequences.

Figure 5 depicts the four generalized versions of the cases in Fig. 3. We
can now see that the synchronization mechanism shown in Fig. 5b explains the
problematic synchronization from a to b in Fig. 4.

3 Extending FSL

In this section, we will first take an overview look at the existing features of FSL,
after which we are going to turn our attention to the three extensions necessary
for applying FSL to realistic examples such as ARC.

3.1 FSL Basics

Like its precursor, RSL [35], FSL divides memory locations into two categories:
atomic and non-atomic.

Non-atomic locations are the ones that are used for “regular” accesses (i.e.,
we use non-atomic accesses whenever we are not implementing a synchronization
mechanism). FSL ensures that there will be no data races on non-atomic accesses.
For reasoning about non-atomic accesses, FSL provides the standard separation
logic rules [26,29].

Atomic accesses are the more interesting ones. As we have already seen in
§2.2, atomic accesses come in four modes (acq_rel, rel, acq, and rlx), and are
used to create synchronization between threads. In the rest of this subsection,
we will focus our attention on FSL rules regarding atomic accesses.

From the perspective of FSL, atomic accesses are used to transfer ownership
between threads. Threads can give up ownership of certain resources by writing
to an atomic location, after which another thread can pick up that resource by
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reading from the same location. Resources are transferred through write-read
pairs, and the rules of the logic make sure that the transferred resources are not
used until the threads in question synchronize.

In what follows, for the sake of clarity, we are going to present slightly sim-
plified FSL rules. A complete presentation of FSL can be found in [13].

FSL triples FSL triples are of the form
{
P
}
E
{
v.Q

}
, where P and Q are as-

sertions denoting the precondition and the postcondition of the expression E. In
the postcondition, the variable v binds the return value of E. In cases where the
postcondition does not depend on the return value, the v binder may be omitted.

Release Writes The easiest way to transfer away a resource is to do a release
write. Since the release write is both the point of origin of ownership transfer,
as well as the point of origin of synchronization (see Figs. 3a and 3b), we can
simply transfer the resource we want without any further complications. This is
summarized in the following rule.{

Rel(`,Q) ∗ Q(v)
}
[`]rel := v

{
Rel(`,Q)

}
(w-rel)

In the precondition, the assertion Rel(`,Q) grants us permission to write to
the atomic location `. Q is a mapping from values to assertions, specifying which
resource we have to give up when writing which value. In particular, if we want
to store the value v into `, we have to give up the ownership of the resource
Q(v). As we can see from the postcondition, once the write is done, we no longer
have the access to the resource Q(v), which can now be obtained by readers.

Relaxed Writes Resources can also be sent away by doing a relaxed write, but
only if the write is helped along by a release fence, as in Figs. 3c and 3d. Our
ownership transfer strategy is somewhat more involved in this case. By doing a
relaxed write, we can only transfer resources that have been “prepared” before
the release fence took effect. In other words, the resources sent away by the
relaxed write should not be accessed in between the fence and the write. The
following two rules describe this situation.{

P
}
fencerel

{
4P

}
(f-rel){

Rel(`,Q) ∗4Q(v)
}
[`]rlx := v

{
Rel(`,Q)

}
(w-rlx)

When executing a release fence, we can put any resource under the 4 modal-
ity. The assertion 4P says, “P has been made ready for transfer and it may not
be accessed any more.” The (w-rlx) rule differs from the (w-rel) rule only in
the appearance of 4 in the precondition. Essentially, we execute a relaxed write
the same way we do a release write, with one important difference: a resource
transferred away by the relaxed write has to be under the 4 modality, ensuring
that a release fence has been placed before the write.
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Acquire Reads Acquire reads function as end points of both resource transfer
and synchronization (see Figs. 3a and 3c). For this reason, resource acquisition
by acquire reads is quite simple.{

Acq(`,Q)
}
[`]acq

{
v.Q(v)

}
(r-acq)

The assertion Acq(`,Q) allows a thread to perform the acquire read. Again,
Q is a mapping from values to assertions. From the perspective of a read, this
mapping tells us which resource will be acquired when reading which value. In
particular, if the value read is v, then the resource acquired is Q(v).

Relaxed Reads When acquiring ownership via relaxed read, we have to wait
for a subsequent acquire fence to synchronize with the thread we are reading
from (see Figs. 3b and 3d). Only after synchronization are we allowed to use the
acquired resource. The following two rules represent this case.{

Acq(`,Q)
}
[`]rlx

{
v.5Q(v)

}
(r-rlx){5P

}
fenceacq

{
P
}

(f-acq)

The resource acquired in the (r-acq) rule is placed under the 5 modality.
The assertion 5P simply means “P cannot be used before an acquire fence has
been reached.” The (f-acq) rule tells us that the acquire fence makes resources
hidden behind the 5 modality usable.

Allocation of Atomics The Rel and Acq permissions are generated when a new
atomic variable is allocated. At the point of allocation, we can freely choose the
mapping Q which governs the ownership transfer through the newly allocated
variable.

Q : Values → Assertions{
emp

}
alloc()

{
`.Rel(`,Q) ∗ Acq(`,Q)

} (a-at)

These are all the rules regarding ownership transfer through atomic accesses
in FSL. Let us now turn our attention to the three extensions which will allow
us to verify ARC.

3.2 Partial Permissions for Non-atomics

Basic FSL does not support reasoning about programs with concurrent read ac-
cesses to non-atomic locations. On the other hand, ARC is a library specifically
used to allow concurrent reads of a shared resource. Therefore, this is the first
gap that needs to be bridged in order to successfully verify programs like ARC.

To enable reasoning about concurrent non-atomic reads, we outfitted FSL
with partial permissions [8, 10] for non-atomic locations. In order to execute
a write, the full permission is needed, while reading is possible with a partial
permission. The rules of the logic make sure that the full permission cannot
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concurrently coexists with a partial one, nor can there exists more than one full
permission at a time. As a result, there cannot be any read-write or write-write
races on non-atomic locations.

Formally, permission structures are tuples (M,⊕, ε,1), where (M,⊕) forms
a partial commutative monoid with ε as the neutral element, and 1 ∈M \{ε} is
a ‘maximal’ element of the monoid composable only with the neutral element,
i.e., 1⊕ q is undefined for every q ∈M \ {ε}.

To write to a location `, one must have the full permission `
17→ −; while

to read from `, having a permission ` q7→ v for any q ∈ M \ {ε} suffices. Asser-
tion ` ε7→ − is taken to be equivalent with the empty resource emp. Separating
conjunction respects the composition operation on the monoid:

`
p7→ v ∗ ` q7→ v ⇐⇒

{
`
p⊕q7→ v if p⊕ q is defined

false otherwise.

The most well known permission model, which is incidentally also the one
used in the correctness proof of ARC, is the model of fractional permissions [10].
In this model, permissions are fractions in the interval [0, 1], ε = 0, 1 = 1, and
composition is defined by

p⊕ q =

{
p+ q if p+ q ∈ [0, 1]

undefined otherwise.

Our proof of soundness is not dependent on fractional permissions, but is
parametric in the permission structure for non-atomic accesses, which allows for
greater flexibility when designing proofs that require partial permissions.

3.3 Compare-and-swap Rules

Another problem we are facing when verifying ARC is the presence of atomic
update operations (fetch_and_add instructions), for which no support is pro-
vided in FSL. We provide the rules for compare-and-swap (CAS), a basic atomic
update instruction, which can be used to implement other, more advanced ones,
such as fetch_and_add.

Details of the implementation of fetch_and_add using CAS, and the corre-
sponding FSL specification for fetch_and_add can be found in §4.3.

The CAS instruction CASτ (`, v, v
′) reads the location `, and if the value read

is v it updates it atomically to v′. If CAS reads some value other than v, then
the update is not executed. In any case, CAS returns the value read. Parameter
τ tells us the type of update event generated by the successful CAS operation.
The possible values of τ are rlx, rel, acq, and acq_rel.

Recall that update actions act as both reads and writes. When reading, the
update is treated as an acquire read action if it is of acq or acq_rel kind, and
as a relaxed read otherwise. Acting as a writer, the update is treated as a release
write if it is of rel or acq_rel kind, and as a relaxed write otherwise.
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FSL [13] provides no CAS rules, but its predecessor RSL [35] does. The
CAS rule provided by RSL only supports ownership transfer by acq_rel CASes,
and does not allow any ownership transfer over release sequences. Ownership
transfer using release sequences and multiple types of CASes is necessary to
verify complex algorithms such as ARC. Therefore, it is necessary to augment
FSL with stronger CAS rules than the one present in RSL.

In what follows, we will present the new rules regarding CAS instructions.
Here, as in §3.1, we are presenting a simplified version of the rules. For full rules,
we refer the reader to the appendix.

We will start the presentation of the CAS rules with a simplified version of
the rule for the strongest type of CAS instruction, the acq_rel CAS.

Q(v) ⇒ A ∗ T
P ∗ T ⇒ Q(v′){

U(`,Q) ∗ P
}
CASacq_rel(`, v, v′)

{
a. (a = v ∧A)
∨ (a 6= v ∧ U(`,Q) ∗ P )

} (cas-ar*)

In the precondition we have assertion U(`,Q), which gives us the permission
to execute CAS on the location `. As in Rel and Acq assertions, Q is a mapping
from values to assertions, telling us what resource we can get by reading a value,
and which resource we have to send away when writing a value. The remaining
component in the precondition is P , the resource we want to transfer away upon
a successful CAS operation.

If the CAS fails (i.e., the value read, a, is different from v), then no resource
transfer happens, and in the postcondition we are left with the same resources
we had in the precondition.

In the case of a successful CAS (i.e., the value read was v), we have at our
disposal the resource Q(v). According to the first premise of the rule, we have
to split Q(v) into two parts, A, and T . Resource A is the part that we are going
to acquire and keep it for ourselves in the postcondition. Resource T will remain
in the invariant Q. The second premise requires that the resource P (which we
have in our precondition) together with the resource T (which we left behind
when acquiring ownership) are enough to satisfy Q(v′), thus reestablishing the
invariant for the newly written value.

The (cas-ar*) is a useful rule as it stands, but can still be strengthened. The
opportunity for strengthening lies in the second premise of the (cas-ar*) rule.
If, in addition to merely reestablishing the invariant, we manage to prove some
additional facts, we can carry those facts into the postcondition. The strength-
ened rule is

Q(v)⇒ ∃z. A(z) ∗ T (z)
∀z. (P ∗ T (z)⇒ Q(v′) ∧ ϕ(z))

∀z. pure(ϕ(z)){
U(`,Q) ∗ P

}
CASacq_rel(`, v, v′)

{
a. (a = v ∧ ∃z.A(z) ∧ ϕ(z))
∨ (a 6= v ∧ U(`,Q) ∗ P )

} . (cas-ar)

Instead of assertions A and T , the rule now features mappings A and T
from values to assertions. The first premise asks us to split Q(v) into A(z) and
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T (z), for some value z. The second premise requires that from P ∗ T (z) we
prove not only Q(v′), but also some fact about z, which then gets carried over
to the postcondition. Lastly, it is required for ϕ(z) to be pure, meaning that the
assertion ϕ(z) is a logical fact about z, and is not saying anything about the
ownership of resources or the state of the heap.

Rules for the other types of CAS accesses are all a slight modification of the
(cas-ar) rule. Modifications are in the same vein as the ones that get us from
(r-acq) and (w-rel) to (r-rlx) and (w-rlx). Namely, where the access type
gets relaxed, 4 and 5 modalities take over in order to ensure that proper fences
have been placed.

Since the premises in (cas-rel), (cas-acq), and (cas-rlx) are the same as
in (cas-ar), we will avoid repeating them.{

U(`,Q) ∗ P
}
CASrel(`, v, v

′)

{
a.
(
a = v ∧ ∃z.5A(z) ∧ ϕ(z)

)
∨ (a 6= v ∧ U(`,Q) ∗ P )

}
(cas-rel)

{
U(`,Q) ∗4P

}
CASacq(`, v, v

′)

{
a. (a = v ∧ ∃z.A(z) ∧ ϕ(z))
∨ (a 6= v ∧ U(`,Q) ∗4P )

}
(cas-acq)

{
U(`,Q) ∗4P

}
CASrlx(`, v, v

′)

{
a.
(
a = v ∧ ∃z.5A(z) ∧ ϕ(z)

)
∨ (a 6= v ∧ U(`,Q) ∗4P )

}
(cas-rlx)

Release CAS is treated as a release write and a relaxed read. Therefore, in
(cas-rel) we can send away P without any problems, but the acquired resource
has to be placed under the 5 modality, requiring us to use an acquire fence
before accessing the resource.

Acquire CAS is a relaxed write and an acquire read. Because of this, in
(cas-acq) the resource we are trying to transfer away is under the 4 modality,
requiring a release fence before the CAS. On the other hand, the resource we
acquire is immediately usable.

Relaxed CAS is relaxed as both read and write. This is reflected in the
(cas-rlx) rule by having both modalities in play.

Note that simple CAS rules in the style of (cas-ar*) can be derived from
the more general ones for any type of CAS. We simply need to choose A and T
such that they do not depend on z, and set ϕ(z) to always be true.

Remark 1 (About the CAS rule strengthening). The strengthening was moti-
vated by the ARC proof. The ARC algorithm can be proven correct using just
the simple CAS rules that do not contain the “z parametrization”. The proof
using the simple CAS rules requires the use of additional ghost state (see §3.4),
and is in general more complicated compared to the proof presented in §4.

Remark 2 (About the soundness of the CAS rules). The soundness of FSL++’s
CAS rules (even the simple ones) depends heavily on release sequences (Fig. 5).
Specifically, the rules allow us to split the invariant of the value read Q(v)
into two parts and take out only the A(z) part, while using the T (z) part to
reestablish the invariant for the new value written. In essence, the T (z) part of
Q(v) is being sent down the chain of updates reading from each other, and can
be picked up at any later point.
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It is interesting to note that as long as we are working within the release-
acquire fragment of the C11 model (i.e., all writes are of rel type, all reads
are of acq type, and all updates are of acq_rel type), the soundness of the
split does not depend on release sequences, because every act of reading causes
synchronization to happen.

On the other hand, in the presence of the relaxed accesses, release sequences
are required to establish the soundness of the split even for the (cas-ar) rule.

Remark 3 (Soundness of the RSL-style CAS rule). A variant of the RSL’s CAS
rule is admissible in FSL++. The difference is that we would now require the
release permission to be present in the precondition, unlike in RSL, where it could
be a part of the acquired resource. This is not an important restriction, because
(due to the duplicability of release permissions) any RSL proof that uses the
CAS rule can be modified to include the release permission in the precondition.

The last CAS rule (cas-⊥) allows us to quickly conclude that a successful
CAS cannot happen in the situation where we own a resource which is incompat-
ible with the resources which would be acquired by a successful CAS operation.

Q(v) ∗ P ⇒ false
τ ∈ {rlx, rel,acq,acq_rel}{

U(`,Q) ∗ P
}
CASτ (`, v, v′)

{
a. a 6= v ∧ U(`,Q) ∗ P

} (cas-⊥)

The U permission is obtained upon allocation in a similar fashion as the Rel
and Acq permissions.

Q : Values → Assertions{
emp

}
alloc()

{
`. U(`,Q)

} (a-at-u)

Finally, we would like to bring your attention to several useful properties of
the update permission U. It is duplicable, and it interacts with the Rel and Acq
permissions, allowing us to perform not only updates, but also reads and writes,
when holding an update permission.

U(`,Q) ⇐⇒ U(`,Q) ∗ U(`,Q) (u-split)
U(`,Q) ⇐⇒ U(`,Q) ∗ Rel(`,Q) (u-rel-split)
U(`,Q) ⇐⇒ U(`,Q) ∗ Acq(`, λv.emp) (u-acq-split)

According to (u-rel-split), when holding the U(`,Q), we also have Rel(`,Q),
allowing us to write to ` using the appropriate atomic write rule. On the other
hand, (u-acq-split) tells us that we are allowed to read when holding the
U(`,Q) permission, but we cannot gain any ownership (more precisely, no matter
the value read, the acquired resource will always be the empty resource emp).

3.4 Ghost State

Even though we are now able to reason about both concurrent non-atomic reads,
and atomic update operations, we still do not have sufficient reasoning power to
verify the correctness of ARC.
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To see what are we lacking, we will turn our attention to the clone function
(see Fig. 1). Our desired specification from Fig. 2 tells us that starting with
one ARC(a, v) resource, after executing clone(a), we will have that permission
duplicated.

The only thing clone does is to increment the reference counter by one.
The obvious way to get the additional ARC permission would be to acquire
it from the invariant governing the reference counter, via the (cas-rlx) rule.
Unfortunately, any resource acquired that way would be protected by the 5
modality, and there is no acquire fence to make the resource usable. In short,
clone function cannot acquire any ownership, since it does not synchronize with
any other thread.

So, if we cannot acquire any ownership when executing clone, what can
we do? One possibility is to somehow duplicate the ARC(a, v) permission we
already have. This would not require us to acquire any ownership, but it also
makes the act of incrementing the counter superfluous. If we can simply duplicate
the ARC(a, v) permission, what is the point in having the clone function at all?

If we want to verify ARC, we have to be able to remember the fact that
clone produced another instance of the ARC(a, v) resource (i.e., the reference
counter was incremented), without the clone function acquiring any additional
resources. To achieve this reasoning, we employ ghost state [12, 18, 23, 34], a
very useful feature of program logics that is often used for logical “accounting”
without changing the program state.

The way to think of the ghost state is as if we have at our disposal locations
that are never accessed by our program. Those locations carry ghost resources,
which cannot influence the behavior of the program, since they are never accessed
by the program, but can help us in reasoning.

In a proof, ghosts can be simply introduced whenever the need for them
arises using the (ghost-intro) rule.{

P
}
C
{
Q
}{

P
}
C
{
Q ∗ ∃γ. γ : g

} (ghost-intro)

The assertion γ : g means that the ghost location γ carries the ghost re-
source g. Ghost resources (on a single location) have to form a partial commu-
tative monoid (PCM). The composition operation (⊕) of the PCM connects the
ghost resources to the separating conjunction of FSL.

γ : g ∗ γ : g′ ⇐⇒

{
γ : g ⊕ g′ if g ⊕ g′ is defined,
false otherwise.

(ghost-∗)

The most important feature of ghost state from the perspective of the veri-
fication of ARC is ability to transfer ownership of ghosts without the need for
synchronization. This is achieved by having the ghost state be agnostic with
respect to the 4 and 5 modalities.

γ : ε ⇐⇒ 4 γ : ε ⇐⇒ 5 γ : ε (ghost-mod)
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Intuitively, it is not a problem to define the ghost state in such a way to have
the (ghost-mod) equivalences hold, because the ghost state is not accessed by
the program. The principal duty of the 4 and 5 modalities is to ensure proper
placement of fences in order to avoid any data races on non-atomic accesses.
Since the ghost state is never accessed, it cannot be involved in any data races,
and is therefore free to ignore modalities.

4 Verification of ARC

In this section, we will use FSL to verify the ARC algorithm from Fig. 1. Since
FSL does not have support for deallocation, we treat the call to the free function
as a no-operation. For further discussion about handling deallocation see §5.3.

The following theorem contains the formal correctness statement for ARC.

Theorem 1 (Correctness of ARC). There exists a predicate ARCγ,δ, param-
etrized by two ghost locations γ and δ, such that the following holds{

emp
}

new(v)
{
a.∃γ, δ.ARCγ,δ(a, v)

}{
ARCγ,δ(a, v)

}
read(a)

{
y. y = v ∧ ARCγ,δ(a, v)

}{
ARCγ,δ(a, v)

}
clone(a)

{
y. y 6= 0 ∧ ARCγ,δ(a, v) ∗ ARCγ,δ(a, v)

}{
ARCγ,δ(a, v)

}
drop(a)

{
y. (y > 1 ∧ emp) ∨ (y = 1 ∧ a.data 17→ v)

}
,

where the fractional permission structure is used for the non-atomic locations.

The return value of the clone and drop functions is considered to be the
value returned by the fetch_and_add instruction within those functions. (Func-
tion fetch_and_add returns the value before the increment.) In other words,
return value y for clone means that it incremented the reference counter from y
to y+1, and for drop it means that the counter was decremented from y to y−1.

Note that the specification of drop tells us that in the case where the reference
counter was decremented from 1 to 0, we have the full permission on a.data.
When modeling deallocation, having the full permission for a location would be
enough to deallocate it.

An additional thing of note is that we prove that the return value of the clone
and drop functions can never be 0. This means that clone and drop never try
to access the ARC object after all the references to it have been dropped.

The rest of this section is devoted to the proof of Theorem 1.
The theorem already states the permission model used for non-atomic loca-

tions. We are left with choosing a PCM for the ghost state. Our chosen structure
is described in the following lemma.
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Lemma 1 (Ghost Monoid). The structure (Q>0 × {+,−},⊕), with the par-
tial binary operation ⊕ defined as

f+ ⊕ q+ := (f + q)+

f− ⊕ q− := undefined

f+ ⊕ q− := q− ⊕ f+ :=

{
(q − f)− if q − f > 0

undefined otherwise

is a partial commutative monoid, with the neutral element 0+.

Think of a “positive” ghost assertion γ : q+ as having a q amount of some

resource, while the “negative” ghost assertion γ : q− counts how much of that
resource exists at any given time.

It is important to note that there can exist only one negative ghost assertion
at a single point in time, since (according to (ghost-∗)) having more than one
would lead to a contradiction.

We can now define the invariant that will govern updates to ARC’s reference
counting field.

Definition 1 (ARC invariant). For location x, value v, and ghost locations
γ and δ, we define the mapping from values to assertions

Qγ,δ,v,x
def
= λc. if c = 0 then γ : 0− ∗ δ : 0−

else ∃f ∈ [0, 1]. x
f7→ v ∗ γ : (c− 1 + f)− ∗ δ : (1− f)− .

The way to think about the invariant is “if the value of the resource counter
is c, then Qγ,δ,v,x(c) holds.” There are two main parts to the Qγ,δ,v,x invariant.

1. Permissions to access the location x that have been dropped by various
threads are collected into the assertion x f7→ v.

2. The assertion γ : (c− 1 + f)− counts the number of still active ARC objects
created by the clone function (this number is c−1), while at the same taking
note of the amount of read permissions to x that have been dropped so far
(this is represented by f).

The interplay between these two parts is what will enable us to reconsti-
tute the full permission after all the ARC objects have been dropped. How this
happens will become clear in §4.5.

Lastly, the least complicated part of the invariant, the ghost state attached
to the ghost location δ, counts how much of the access permission to x is shared
by the still active ARC objects. This will be used in §4.4 and §4.5 in order to
establish that clone and drop never read 0 as the value of the reference counter.

We are now finally at the point where we can define the ARC predicate.
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{emp}
a = alloc();{

U(a.count,Qγ,δ,v,a.data) ∗ a.data
17→ − ∗ γ : 0− ∗ δ : 0−

}
a.data = v;{

U(a.count,Qγ,δ,v,a.data) ∗ a.data
17→ v ∗ γ : 0− ∗ δ : 0−

}
⇓ (using (ghost-∗), and a.data 07→ v ⇐⇒ emp){

U(a.count,Qγ,δ,v,a.data) ∗ a.data
17→ v ∗ a.data 07→ v ∗

γ : 0− ∗ γ : 0+ ∗ δ : 1− ∗ δ : 1+

}
⇓ (using (ghost-mod), and emp ⇐⇒ 4emp)U(a.count,Qγ,δ,v,a.data) ∗ a.data

17→ v ∗ γ : 0+ ∗ δ : 1+ ∗

4
(
a.data 07→ v ∗ γ : 0− ∗ δ : 1−

) 
a.countrlx = 1;{

U(a.count,Qγ,δ,v,a.data) ∗ a.data
17→ v ∗ γ : 0+ ∗ δ : 1+

}
return a;
{ARCγ,δ(a, v)}

Fig. 6. Function new: proof sketch.

Definition 2 (ARC Predicate). For ghost locations γ and δ, we define

ARCγ,δ(a, v)
def
= U(a.count,Qγ,δ,v,a.data) ∗

∃q ∈ 〈0, 1]. a.data q7→ v ∗ γ : (1− q)+ ∗ δ : q+ .

The ARC predicate consists of four parts.

1. A permission to execute atomic updates on a.count, as long as we respect
the Qγ,δ,v,a.data invariant.

2. Some fraction of the access permission to a.data, allowing us to read from
it.

3. A ghost γ : (1− q)+ , designed to help the ARC invariant in keeping track of
the number of outstanding ARC objects, and the amount of read permissions
to a.data shared among them.

4. A ghost δ : q+ , designed to make the ARCγ,δ(a, v) assertion incompatible

with the Qγ,δ,v,a.data(0) assertion (q > 0∧ δ : q+ ∗ δ : 0− ⇒ false), therefore
making sure we cannot read 0 from a.count.

In what follows, we are going to discuss main points of the proof for each of
the functions from the ARC algorithm. Full formal proofs are available in the
Coq formalization.

4.1 Function new

In Fig. 6 you can see a simplified version of the proof for the function new.



18 Marko Doko and Viktor Vafeiadis

At the beginning, we have to introduce two ghosts (γ and δ) using the
(ghost-intro) rule, as well as allocate a non-atomic location a.data, and an
atomic location a.count. We are allocating a.count using the (a-at-u) rule.
Naturally, we will choose the mapping defined in Definition 1 as the invariant
governing the a.count location.

The most interesting part of the proof happens when we are executing the
relaxed write instruction a.countrlx = 1. The resources we own as we are about
to execute the relaxed write are

U(a.count,Qγ,δ,v,a.data) ∗ a.data
17→ v ∗ γ : 0− ∗ δ : 0− ,

and according to (u-rel-split) and (w-rlx), in order to execute our relaxed
write, we have to send away a resource given by

4Qγ,δ,v,a.data(1) = 4
(
∃f ∈ [0, 1]. a.data

f7→ v ∗ γ : f− ∗ δ : (1− f)−
)
.

Since we have not executed a release fence, we can only send away resources
that are invariant under the 4 modality. The only non-ghost resource invariant
under 4 is the empty resource. Therefore, we have to choose f to be 0, in order
to exploit the equivalence a.data 07→ v ⇐⇒ emp ⇐⇒ 4emp.

Setting f to 0 dealt with the a.data
f7→ v part of the invariant. We now

have to produce the rest of the invariant: the ghosts γ : 0− and δ : 1− . The

γ ghost we already have, and the δ one can be produced using the δ : 0− ⇐⇒
δ : 1− ∗ δ : 1+ equivalence.

Before releasing a.data 07→ v∗ γ : 0− ∗ δ : 1− , we will exploit the γ : 0− ⇐⇒
γ : 0− ∗ γ : 0+ equivalence in order to keep the γ : 0+ ghost for ourselves.

We can now finally release the required resource, and what we are left with
is a.data 17→ v ∗ γ : 0+ ∗ δ : 1+ , which is exactly the ARC predicate from
Definition 2, with the existentially quantified q set to be 1.

4.2 Function read

Verifying read is trivial. The ARC predicate from Definition 2 tells us that we
have some positive fraction q of the access permission for a.data, which allows
us to execute the non-atomic read and return the value stored in a.data.

4.3 Implementing fetch_and_add

Before continuing with the proofs of clone and drop, let us take a step back
and look at the fetch_and_add instruction used in those two functions. As
mentioned in §3.3, fetch_and_add can be implemented using CAS instructions.
The implementation of fetch_and_add using CAS is given in Fig. 7, together
with the specification that will be used in the next two subsections.
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fetch_and_addτ(x, v) {
do {

t = xrlx;
u = CASτ(x, t, t + v);

} while(t != u);
return u;

}

∀t. (P ⇐⇒ Psend(t) ∗ Pkeep(t))

∀t.


{
U(`,Q) ∗ Psend(t)

}
CASτ (x, t, t+ v){
y. (y = t ∧R(t))
∨ (y 6= t ∧ U(`,Q) ∗ Psend(t))

}


{
U(`,Q) ∗ P

}
fetch_and_addτ (x, v){
y.R(y) ∗ Pkeep(y)

}
τ ∈ {rlx, rel,acq,acq_rel}

Fig. 7. Fetch and add implemented using CAS.

Proving the specification of fetch_and_add correct is simple, and we will
not be going into details of it here. On the other hand, the specification looks
quite daunting and deserves a closer look.

In the precondition, we are given the update permission U(`,Q) and some
resource P .

The first premise of the specification allows us to decide how to split the
resource P depending on the value that we will end up updating. If the value
modified is v, we want to keep the resource Pkeep(v), while sending Psend(v) away.

The second premise deals with the atomic update of the location ` from t to
t+ v. We need to prove that upon successful update we can send away Psend(t),
and acquire R(t).

After executing the fetch_and_add instruction, in the postcondition we get
R(y) ∗ Pkeep(y), with y being the value stored at the location ` prior to the
update taking place. R(y) is what we acquired by updating `, while Pkeep(y) is
the part we kept from the original resource P we had in the precondition.

Using the fetch_and_add specification boils down to deciding how we want
to split the the resource we have for each particular value, and then applying
appropriate CAS rules to satisfy the second precondition of the rule.

4.4 Function clone

For the clone function, we are required to prove two things: (1) executing clone
produces an additional ARC resource, and (2) clone never increments the value
of the reference counter from 0 to 1.

First, let us assume that the value read by the fetch_and_add is 0. In that
case (in accordance with the rule from Fig. 7) we decide to put δ : q+ into

Pkeep. Since q > 0, assertions δ : q+ and Qγ,δ,v,a.data(0) = γ : 0− ∗ δ : 0− are

incompatible (q > 0 ∧ δ : q+ ∗ δ : 0− ⇒ false), and we can use the (cas-⊥)
rule to conclude that the value 0 could not have been read.

Now that we know that the value read is not 0, we need, in cases where
we read some positive value of the reference counter, to somehow produce an
additional ARC resource.
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When executing fetch_and_add, we are going to keep all the resources we
have to ourselves, which means that we have to satisfy the invariant for the in-
cremented value using only what is already there in the invariant for the original
value. Fortunately, our invariant is designed in such a way that for any c > 0,
the equivalence Qγ,δ,v,a.data(c) ⇐⇒ Qγ,δ,v,a.data(c + 1) ∗ γ : 1+ holds. Using
this equivalence, when incrementing the reference counter from c to c + 1, we
obtain the ownership of the ghost assertion γ : 1+ .

Adding the newly acquired ghost resource to the ARC resource we already
have allows us to “produce” an additional ARC resource. In order to do that, we

have to use the following three equivalences: a.data q7→ v ⇐⇒ a.data
q
27→ v ∗

a.data
q
27→ v, γ : (1− q)+ ∗ γ : 1+ ⇐⇒ γ :

(
1− q

2

)+ ∗ γ :
(
1− q

2

)+ , and

δ : q+ ⇐⇒ δ : q2
+ ∗ δ : q2

+ . Using those equivalences, it is easy to see that the

implication ARCγ,δ(a.data, v)∗ γ : 1+ ⇒ ARCγ,δ(a.data, v)∗ARCγ,δ(a.data, v)
holds.

Please note the importance of the fact that the only ownership we obtained
when updating the counter was of a ghost state. Since we are executing an update
of the relaxed kind, any non-ghost resources acquired would be burdened by the
5 modality, and thus unusable.

4.5 Function drop

When verifying the drop function, we can establish that the value of the reference
counter is not 0 in exactly the same way we have done it for the clone function
in §4.4. We are now left with two distinct cases.

First case is when the decrementing the counter does not bring the counter
down to zero, i.e., the value of the counter is being decremented from some
value c > 1. In this case, we are going to release all the resources held by
the ARC predicate, and push them into the invariant. It is easy to see that
Qγ,δ,v,a.data(c) ∗ a.data

q7→ v ∗ γ : (1− q)+ ∗ δ : q+ ⇒ Qγ,δ,v,a.data(c− 1) holds
for any q ∈ 〈0, 1] and c > 1, which reestablishes the invariant for the decremented
value, and leaves us with the empty resource.

Note the importance of the fetch_and_add being of the release kind, which
(trough the (cas-rel) rule) enables us to release all the resources we have.

In the second case, the decrement brings the reference count down to 0. Since
the value read from the counter is 1, we know that the resource being held by
the invariant is Qγ,δ,v,a.data(1) = a.data

f7→ v ∗ γ : f− ∗ δ : (1− f)− , for some
fraction f ∈ [0, 1]. We are going to take the read permission to the data field
out of the invariant, and we are going to release the ghost resources held by the
ARC predicate back into the invariant.

The ghost resource held by the ARC predicate is γ : (1− q)+ ∗ δ : q+ ,

for some q ∈ 〈0, 1]. In order for this assertion to be compatible with γ : f− ∗
δ : (1− f)− , the resource that is already inside the invariant, it is necessary



Tackling Real-Life Relaxed Concurrency with FSL++ 21

xrlx = 0;
yrlx = 0;

if (xrlx == 1)
yrlx = 1;

if (yrlx == 1)
xrlx = 1;

(a) C11 model allows x = y = 1.

Rrlx(x,1)

Wrlx(x,1)Wrlx(y,1)

Rrlx(y,1)
rf

po po

(b) Problematic cyclic execution.
Fig. 8. Out-of-thin-air behavior due to a cycle in the po ∪ rf relation.

to have q + f = 1, and in that case we have γ : (1− q)+ ∗ δ : q+ ∗ γ : f− ∗
δ : (1− f)− ⇒ γ : 0− ∗ δ : 0− , establishing the Qγ,δ,v,a.data(0) invariant.

While establishing the Qγ,δ,v,a.data(0) invariant, we were also able to prove
q + f = 1, which is a pure assertion. According to the (cas-rel) rule, we can
use this fact in the postcondition.

After executing the decrement, we have a.data
q7→ v ∗5a.data

f7→ v in the
postcondition. The f fraction of the access permission, which we obtained from
the invariant, is under 5, because the fetch_and_add was of the release kind,
and we still have to wait for the acquire fence in order to use any resources
taken from the invariant. Since we are in the case where the original value of the
reference counter was 1, the very next instruction is exactly the acquire fence.

After the fence clears the 5 modality (f-acq), the resource we own is trans-
formed into a.data

q7→ v ∗ a.data f7→ v ⇐⇒ a.data
q+f7→ v ⇐⇒ a.data 17→ v.

These equivalences hold because we know q + f = 1, as proven earlier.
With this, the proof of Theorem 1 is concluded.

5 Discussion

In this section, we are going to discuss the strengthening of the C11 memory
model which is assumed by the FSL soundness proof and how it affects the
ARC verification (§5.1). Further, in §5.2, we will discuss the necessity of this
assumption showing that the logic is unsound in its absence. Finally, in §5.3 we
will talk about a possible way to extend FSL with the support for deallocation.

5.1 The Additional Acyclity Assumption

As mentioned in the introduction, FSL is proven sound with respect to a strength-
ening of the C11 model. The strengthening is put in place in order to prevent
the so called out-of-thin-air reads that are allowed by the original C11 model.

The problem arises because C11 is very lenient in what kind of cycles are
allowed to be formed by the program order and reads from relations.

– The program order (po) tells us about the ordering of the events within
each execution thread. More precisely, po(a, b) means that the events a and
b belong to the same thread, and a precedes b.
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xrlx = 0;
yrlx = 0;

r = xrlx;
yrlx = 1;

if (yrlx == 1)
xrlx = 1;

(a) We can observe r = 1!

Rrlx(x,1)

Wrlx(x,1)Wrlx(y,1)

Rrlx(y,1)
rf

po po

(b) Cyclic execution explaining r = 1.
Fig. 9. Load buffering (allowed on Power and ARM).

– The reads from relation (rf) relates writes and reads that read from those
writes: rf(w, r) says that the read event r reads the value written by the
write event w.

Figure 8a shows a program with an undesirable behavior resulting from a cycle
in po ∪ rf. The C11 model allows the program to set both x and y to 1, due to
the allowed “cyclic” execution shown in Fig. 8b.

As noted in [5, 35], this kind of behavior inhibits even the simplest forms of
thread-local reasoning for relaxed accesses.

The simplest way to rectify the problem of out-of-thin-air behaviors is to
forbid cycles in the po∪rf relation altogether. Forbidding these cycles requires the
smallest possible intervention in the C11 model, namely adding just one axiom
requiring acyclicity of po ∪ rf. This is the solution employed by the soundness
proofs of both RSL [35], and FSL [13] in order to restore sane reasoning principles
for relaxed accesses under the C11 memory model. Apart from being used in RSL
and FSL, this “patch” is also advocated by Boehm and Demsky [7].

Requiring po∪rf to be acyclic, however, does come with some implementation
cost. First, it invalidates some compiler optimizations (namely, the reordering
of a relaxed store above a relaxed load), and requires a slightly more expensive
compilation scheme to the Power and ARM architectures. The problem is that
these hardware architectures allow some executions with po∪rf cycles. Consider,
for example, load buffering, shown in Fig. 9a. The weak behavior, returning r = 1
is forbidden by the strengthened C11 model, but allowed by Power and ARM
if the relaxed accesses are compiled to plain loads and stores. Intuitively, the
behavior may arise if the hardware reorders the read from x and the write to y
in the left thread, which do not depend on each other.

Note that the execution in Fig. 9b, which explains the load buffering be-
havior, is exactly the same as the execution we deemed undesirable in Fig. 8b.
The difference between these two examples is the possibility of reordering two
independent instructions in Fig. 9a, while in Fig. 8a the writes depend on the
reads, and these dependencies should render any reorderings invalid. The C11
model does not model the dependencies between memory accesses, which makes
it unable to differentiate between executions in Figs. 8 and 9.

As noted by Boehm and Demsky in [7], in order to obtain acyclic po ∪ rf,
it is enough to forbid load-to-store reordering. On x86-TSO acyclicity of po ∪ rf
comes at no additional cost, since the architecture does not allow reordering of
loads and the subsequent stores. On Power and ARM, load-to-store reordering
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Let Q := λv. v = 0 ∨ γ : T , and T ⊕ T undefined.{
Acq(x,Q) ∗ Rel(y,Q) ∗ γ : T

}
r = xrlx;{

Rel(y,Q) ∗ γ : T ∗ (r = 0 ∨ γ : T
}{

Rel(y,Q) ∗ γ : T ∧ r = 0
}

yrlx = 1;
{r = 0}

{Acq(y,Q) ∗ Rel(x,Q)}
if (yrlx == 1){
Rel(x,Q) ∗ γ : T

}
xrlx = 1;
{emp}

Fig. 10. Using ghosts we can establish absence of load buffering.

can be avoided by placing a false dependency (i.e., a conditional branch to the
next instruction) between every relaxed load and subsequent relaxed stores.

Acyclic po ∪ rf and ARC It is interesting to note that with algorithms like
ARC, which predominantly use atomic updates, and do not have many atomic
reads, ensuring the acyclicity of po ∪ rf on Power and ARM comes for free.

The reason for this comes from the way atomic update instructions are imple-
mented on Power and ARM [31]. When compiling atomic updates, a conditional
branch is placed after the load instruction, which induces a dependency between
the load and any subsequent stores. This means that the false dependencies are
not necessary when compiling atomic updates.

In the case of ARC, a false dependency needs to be placed after the relaxed
read in the implementation of fetch_and_add in Fig. 7. If fetch_and_add is
implemented as a primitive, as it actually is in practice, then it comes without the
burden of false dependencies. Therefore, there is no additional implementation
cost for ensuring that ARC runs under the strengthened C11 model.

5.2 Without the Acyclicity Assumption Ghosts Are Too Strong

Ruling out po∪rf cycles is the simplest but not the only way of ruling out “out-of-
thin-air” behaviors. In fact, during the last year, we saw the emergence of several
new memory models [17, 19, 28] aimed at eliminating out-of-thin-air behaviors
without completely forbidding cycles within the po∪rf relation. All these models
allow the weak behavior of the load buffering program, while forbidding the weak
behavior of the version with dependencies in both threads.

We will now show that our extension of FSL with ghost state is unsound with
respect to these models. As can be seen in Fig. 10, FSL outfitted with ghost state
is strong enough to prove that the weak behavior of the load buffering program
does not happen, which in turn means that FSL is not sound for any of the new
models which allow that behavior.

The proof uses a single ghost location γ holding a non-duplicable token T .
We then use the Q(v) resource invariant to say that either v = 0 or the location
owns the token. Since the token is non-duplicable, we thus encode the invariant
saying that at most one of x and y can have a non-zero value. Initially, both
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locations store the value 0, so the ghost token is given to the left thread. Using
the token, the first thread can thus assert that r = 0, and then use it to write 1
to y. The right thread can conversely gain the token by reading y = 1 and then
use it to write 1 to x.

An interesting thing of note is that all the examples (that we are aware
of) showing unsoundness of FSL under these new models rely on the use of
ghosts, and in the ability to transfer them without any synchronization. In a
sense, being able to fully transfer the ownership of the ghost state without any
synchronization exposes the acyclicity of the po ∪ rf relation.

There are thus two main open questions regarding the connection of FSL,
and the memory models that do not rely on the acyclic po ∪ rf assumption.
1. Is FSL without ghosts sound under any of the models that do not require

po∪ rf to be acyclic? We strongly suspect that FSL without ghosts is sound
under the recent promising model of Kang et al. [19], but proving that this
is indeed the case is a highly non-trivial task.

2. In the case of the affirmative answer to the first question, can we come up
with the rules for the ghost state which would allow us to verify algorithms
like ARC? A possibility would be to somehow restrict the (ghost-mod)
rule so that it may be used only in conjuction with a release write. Such
a restriction would preserve the proof of ARC, while ruling out the proof
of load buffering. Its soundness with respect to models such as [17, 19, 28],
however, is unclear.

5.3 Deallocation

The proof of soundness of FSL already ensures that if a thread owns the full
permission to access a non-atomic location, then there are no other threads that
concurrently hold an access permission to the same location. Using this fact,
proving that it is safe to deallocate a non-atomic location when holding the full
access permission to it is a purely technical matter.

In order to enable deallocation of the atomic locations, we would have to
outfit atomic locations with permissions, and show that (for a single location)
the full permission cannot coexist concurrently with any other permission. This
result should follow from the same line of reasoning as the corresponding result
for the non-atomic locations.

In the context of our correctness proof of ARC, the necessary permission for
deallocating the atomic variable a.count could be obtained in exactly the same
way as we obtained the full permission of a.data (see §4.5).

6 Related Work

In this section we would like to call attention to some related work that was not
already discussed in §5. We divide our discussion in two parts: in §6.1 we discuss
other program logics for reasoning about weak memory, and in §6.2 we turn our
attention to some other approaches for establishing program correctness under
weak memory.
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6.1 Program Logics

Apart from FSL’s predecessor, RSL [35], the only other separation logic for
the C11 memory model is GPS [34]. Even though GPS handles the ownership
transfer in a more flexible way than FSL (using protocols and escrows), GPS
is unable to reason about programs that use relaxed memory accesses, such as
ARC. The reason for this limitation of GPS is the fact that GPS works under
the release-acquire fragment of the C11 memory model.

He et al. [14] have proposed an extension of GPS with FSL-style modalities,
to give it support for relaxed accesses and memory fences. As the original FSL,
this extension of GPS does not have support for atomic updates, which makes
it inapplicable to programs like ARC. Additionally, unlike FSL, this extension
of GPS lacks a soundness proof.

It would be interesting to explore adapting GPS-style protocols to FSL, in
order to make FSL applicable to an even wider range of programs that require
more sophisticated forms of reasoning.

Apart from the separation logics, there is an Owicki-Gries-based logic called
OGRA [21] for reasoning about the C11 memory model, but it also handles only
the release-acquire fragment of the C11 model. Other program logics for weak
memory [30, 32] have been focused on the x86-TSO memory model, which is
stronger than the one assumed by FSL.

6.2 Other Approaches

Aside from program logics, there are model checking tools for programs with
C11-style atomics. Worth noting is CDSChecker [25] which includes support
for relaxed accesses and memory fences. CDSChecker is designed to conduct
unit tests on concurrent programs, and cannot be used to verify correctness.

An alternative approach to reasoning about weak memory behaviors is to
restore sequential consistency. This can be done by placing fences or stronger
atomic accesses in order to eliminate weak behaviors [4, 24], or by proving ro-
bustness theorems [9, 11, 20] stating conditions under which programs have no
observable weak behaviors. These approaches are not applicable to performance-
critical algorithms such as ARC, which are exploiting weak memory consistency.
Placing additional fences or using stronger memory accesses to restore sequential
consistency would go against the basic design principles of these algorithms.

Recently, Alglave proposed an invariance method for proving program cor-
rectness under weak memory [3]. This approach is parametric with the respect
to the memory model, and so could be applied to the C11 memory model. It is,
however, non-compositional, which makes using it to obtain a correctness proof
for the ARC algorithm difficult.
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Appendix A Complete FSL++ Syntax and Rules

Here we present the full syntax and rules of FSL, and briefly discuss the technical
differences between the actual FSL rules and the simplified version of the rules
presented in §3.

Definitions 3 and 4 present the concurrent programing language used by
FSL++, and the syntax of FSL++ assertions. Fig. 11 contains standard inference
rules inherited from concurrent separation logic. Remaining FSL++ rules can
be divided into rules regarding non-atomic accesses (Fig. 12), atomic accesses
(Fig. 15), fences (Fig. 13), and ghosts (Fig. 14).

Definition 3 (Programming language). FSL++ uses the programming lan-
guage specified by the following grammar

v ∈ Val ::= ` | n where ` ∈ Loc, n ∈ N
e ∈ AExp ::= x | v where x ∈ Var
E ∈ Exp ::= e | let x = E in E′ | if e then E else E′

| repeat E end | E1‖E2 | alloc()
| [e]ξ | [e]ζ := e′ | CASτ,σ(e, e′, e′′)),

where ξ ∈ { acq, rlx,na}, ζ ∈ {rel, rlx,na},
τ ∈ { acq_rel,acq, rel, rlx}, σ ∈ {acq, rlx}.

Atomic expressions, e ∈ AExp, consist of variables and values (locations and
numbers). Program expressions, E ∈ Exp, consist of atomic expressions, let-
bound computations, conditionals, loops, parallel composition, memory alloca-
tion, loads, stores, and atomic compare-and-swap (CAS) instructions.

As in C, in conditional expressions we treat zero as false and non-zero values
as true. The construct repeat E end executes E repeatedly until it returns a
non-zero value.

The CAS instructions are parametrized by two access modes. In case of a
successful CAS, an atomic update event of the type τ will be generated, and a
failed CAS will generate an atomic read event of type σ. The simplified CAS
instruction from §3.3, which is parametrized by only one access mode, can be
obtained by setting σ = rlx.

Definition 4 (FSL++ assertions). Let (P,+, ε,1) be a permission struc-
ture1, and (G,⊕) a partial commutative monoid. FSL++ assertions are defined
by the grammar

P,Q ::= false | P → Q | P ∗Q | ∀x. P
| emp | e p7→ e′ | Uninit(e)
| Rel(e,Q) | Acq(e,Q) | RMWAcq(e,Q) | Init(e)
| 4P |5P | e : g ,

where e is an arithmetic expression, p ∈ P, and g ∈ G.
1 Permission structure has been defined in §3.2.
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Note that the full FSL++ syntax contains three assertions not mentioned
in §3 (Uninit(e), Init(e), RMWAcq(e,Q)), and it is missing U(e,Q), which was
presented in §3.3.

The Uninit(`) assertion represents ownership of an uninitialized non-atomic
location `. This is the ownership we get after allocating a non-atomic location.

The Init(`) assertion represents knowledge that the atomic location ` has
been initialized. This assertion is required by atomic reads and updates, and it
is produced by atomic writes.

The RMWAcq(`,Q) assertion, together with the Rel(`,Q′) assertion gives
us the permission to execute atomic updates. The update permission U, from
§3.3, can be defined as U(`,Q) := Rel(`,Q) ∗ RMWAcq(`,Q) ∗ Init(`). Properties
(u-split), (u-rel-split), and (u-acq-split) follow from Lemma 2.

Lemma 2 (Basic properties of FSL++ assertions). The following equiv-
alences universally hold.

Init(`) ⇐⇒ Init(`) ∗ Init(`)
Rel(`,Q) ⇐⇒ Rel(`,Q) ∗ Rel(`,Q)

RMWAcq(`,Q) ⇐⇒ RMWAcq(`,Q) ∗ RMWAcq(`,Q)
RMWAcq(`,Q) ⇐⇒ RMWAcq(`,Q) ∗ Acq(`, λv.emp)

Acq(`,Q1) ∗ Acq(`,Q2) ⇐⇒ Acq(`, λv.Q1(v) ∗ Q2(v))

Some rules in Figs. 13 and 15 require certain assertions to be precise, or
normalizable. The definition of precision is standard [27], while the notion of
normalizability has been introduced in [13].

The role of the normalizability conditions is to forbid ownership transfer of re-
sources that appear under a modality. This condition poses no burden to the user
of the logic, since Lemma 3 provides a simple syntactical test for normalizability.

Lemma 3 (Sufficient condition for normalizability). If P is a positive2
FSL++ assertion that does not contain modalities, i.e., 4 and 5 do not appear
in P , then P is normalizable.

CAS rules in Fig. 15 acknowledge the fact that in case when the CAS fails, a
read event is produced. Therefore, when CAS fails, atomic read rules take over.
However, using Lemma 2 we can see that{

RMWAcq(`,Qacq)
}
[`]σ

{
RMWAcq(`,Qacq)

}
holds for every σ ∈ {rlx,acq}. With this in mind, it is straightforward to derive
the simplified CAS rules presented in §3.3 from the general ones in Fig. 15.

It is worth noting that the verification of ARC requires only the simplified
version of the CAS rules as presented in §3.3.

2 An assertion is positive if the only logical connectives it contains are disjunction,
conjunction, and separating conjunction.
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{
P
}
e
{
y. P ∧ y = e

}
{
P
}
E1

{
x.Q

}
∀x.
{
Q
}
E2

{
y.R

}{
P
}
let x = E1 in E2

{
y.R

}
{
P ∧ b

}
E1

{
y.Q

}{
P ∧ ¬b

}
E2

{
y.Q

}{
P
}
if b then E1 else E2

{
y.Q

}
{
P
}
E
{
y.Q

}
Q[0/y]⇒ P{

P
}
repeat E end

{
y.Q ∧ y 6=0

}
{
P1

}
E1

{
y.Q1

}{
P2

}
E2

{
Q2

}{
P1 ∗ P2

}
E1‖E2

{
y.Q1 ∗Q2

}
{
P
}
E
{
y.Q

}{
P ∗R

}
E
{
y.Q ∗R

} {
P
}
E
{
y.Q

}{
∃x. P

}
E
{
y.∃x.Q

}
{
P
}
E
{
y.Q

}{
P ′
}
E
{
y.Q′

}{
P ∨P ′

}
E
{
y.Q∨Q′

}
{
P
}
E
{
y.Q

}
P ′ ⇒ P ∀y.Q⇒ Q′{

P ′
}
E
{
y.Q′

}
Fig. 11. Standard proof rules supported by FSL++.

{
emp

}
alloc()

{
y.Uninit(y)

}
{
`

17→ − ∨ Uninit(`)
}
[`]na := v

{
`

17→ v
} p ∈ P \ {ε}{

`
p7→ v
}
[`]na

{
y. y = v ∧ ` p7→ v

}
Fig. 12. FSL++ proof rules for non-atomic locations.

normalizable(P ){
P
}
fencerel

{
4P

} {5P
}
fenceacq

{
P
}

normalizable(P ){
P ∗5Q

}
fenceacq_rel

{
4P ∗Q

}
Fig. 13. FSL++ proof rules for memory fences.

{
P
}
C
{
Q
}{

P
}
C
{
Q ∗ ∃γ. γ : g

}
Fig. 14. FSL++ ghost introduction rule.



Tackling Real-Life Relaxed Concurrency with FSL++ 31

Q : Values → Assertions{
emp

}
alloc()

{
`.Rel(`,Q) ∗ Acq(`,Q)

}
normalizable(Q(v)){

Rel(`,Q) ∗ Q(v)
}
[`]rel := v

{
Init(`)

} ∀v. precise(Q(v)) ∧ normalizable(Q(v)){
Acq(`,Q) ∗ Init(`)

}
[`]acq{

v.Acq(`,Q[v := emp]) ∗ Q(v)
}

{
Rel(`,Q) ∗4Q(v)

}
[`]rlx := v

{
Init(`)

} ∀v. precise(Q(v)) ∧ normalizable(Q(v)){
Acq(`,Q) ∗ Init(`)

}
[`]rlx{

v.Acq(`,Q[v := emp]) ∗5Q(v)
}

Q : Values → Assertions{
emp

}
alloc()

{
`.Rel(`,Q) ∗ RMWAcq(`,Q)

}
Let UPD(`,Qrel,Qacq) := Rel(`,Qrel) ∗ RMWAcq(`,Qacq) ∗ Init(`) in

Qacq(v) ⇒ ∃z. A(z) ∗ T (z)
∀z. (P ∗ T (z) ⇒ Qrel(v

′) ∧ ϕ(z))
∀z. pure(ϕ(z))
normalizable(P ){

UPD(`,Qrel,Qacq) ∗ P
}
[`]σ

{
a. a 6= v → R

}
σ ∈ {acq, rlx}{

UPD(`,Qrel,Qacq) ∗ P
}

CASacq_rel,σ(`, v, v
′){

a. (a = v ∧ ∃z.A(z) ∧ ϕ(z))
∨ (a 6= v ∧R)

}

Qacq(v) ⇒ ∃z. A(z) ∗ T (z)
∀z. (P ∗ T (z) ⇒ Qrel(v

′) ∧ ϕ(z))
∀z. pure(ϕ(z))
normalizable(P ){

UPD(`,Qrel,Qacq) ∗ P
}
[`]σ

{
a. a 6= v → R

}
σ ∈ {acq, rlx}{

UPD(`,Qrel,Qacq) ∗ P
}

CASrel,σ(`, v, v
′){

a.
(
a = v ∧ ∃z.5A(z) ∧ ϕ(z)

)
∨ (a 6= v ∧R)

}

Qacq(v) ⇒ ∃z. A(z) ∗ T (z)
∀z. (P ∗ T (z) ⇒ Qrel(v

′) ∧ ϕ(z))
∀z. pure(ϕ(z)){

UPD(`,Qrel,Qacq) ∗4P
}
[`]σ

{
a. a 6= v → R

}
σ ∈ {acq, rlx}{

UPD(`,Qrel,Qacq) ∗4P
}

CASacq,σ(`, v, v
′){

a. (a = v ∧ ∃z.A(z) ∧ ϕ(z))
∨ (a 6= v ∧R)

}

Qacq(v) ⇒ ∃z. A(z) ∗ T (z)
∀z. (P ∗ T (z) ⇒ Qrel(v

′) ∧ ϕ(z))
∀z. pure(ϕ(z)){

UPD(`,Qrel,Qacq) ∗4P
}
[`]σ

{
a. a 6= v → R

}
σ ∈ {acq, rlx}{

UPD(`,Qrel,Qacq) ∗4P
}

CASrlx,σ(`, v, v
′){

a.
(
a = v ∧ ∃z.5A(z) ∧ ϕ(z)

)
∨ (a 6= v ∧R)

}

Q(v) ∗ P ⇒ false{
UPD(`,Qrel,Qacq) ∗ P

}
[`]σ

{
a. a 6= v → R

}
τ ∈ {rlx, rel,acq,acq_rel} σ ∈ {acq, rlx}{

UPD(`,Qrel,Qacq) ∗ P
}
CASτ ,σ(`, v, v

′)
{
a. a 6= v ∧R

}
Fig. 15. FSL++ proof rules for atomic locations.
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